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Abstract 

Recent work in X-ray crystallography has demonstrated 
that reasonable nuclear H positional parameters can 
be obtained by refinements using high-order data only. 
A theoretical model for high-order refinements of H 
atoms has been developed which simulates the experi- 
mental results. For a suitable choice of the lower sin 0/2 
cut-off, the H atoms are shown to refine to their actual 
nuclear positions. The calculations imply that the 
proper cut-off is indeed dependent on the type of atom 
to which the H is bonded, in agreement with experi- 
mental results. 

Introduction 

In covalently bonded H atoms a substantial fraction of 
the electron density is located at the bond region in the 
space between the atoms. Owing to this acentric density 
distribution, standard least-squares refinements of 
positional parameters in X-ray crystallography tend to 
displace the H towards the atom to which it is bonded. 
Usually, X--H bond lengths obtained in X-ray structure 
determinations are about 0 .1-0-2  A shorter than the 
internuclear distance. 

Various modifications of the spherical description of 
the H atom density have been attempted without going 
beyond a one-centre expansion (Stewart, 1969). The 
results are not entirely satisfactory, however. This work 
investigates the error brought about by a simple one- 
centre model, assuming a two-centre expansion of the 
true density. 

In many-electron atoms, one may partition the 
electron density into an inner 'core' electron density 
and an outer, more diffuse 'valence' electron density. 
For an atom in a molecule, the core density can be 
assumed to remain unchanged, whereas the valence 
electrons are redistributed when the molecule is formed. 
The influence of this aspherical valence electron density 
on structure parameters may be reduced by using only 
high-order data in the refinement procedure since 
valence scattering is negligible at high sin 0/2 values. 
Such procedures are now becoming standard routines 
in accurate X-ray work. 

The low scattering power of H at high sin 0/2 values 
usually prevents the inclusion of H parameters in high- 
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order refinement., However, in a number of recent 
accurate investigations (Hope & Ottersen, 1978; 
Ottersen & Hope, 1979) it has been demonstrated that 
H positional parameters do indeed refine to reasonable 
values if only data with sin 0/2 above a certain cut-off 
are used. The actual numeric value for this cut-off 
seems to be dependent on the type of atom to which the 
H is bonded (Hope, Poling & Ottersen, 1976). 

The experimental results indicate that the obser- 
vation/parameter ratio must be very high, about 60:1, 
in order to obtain accurate H parameters. This makes 
the data collection for most structures extremely time- 
consuming and in many cases prohibitive. A theoretical 
model for refinements of bonded H atoms will be 
important in determining the sin 0/2 ranges to be 
emphasized in the data collection when accurate H 
parameters are of prime concern. In this way the model 
may help in reducing data-collection times and may 
also give a better understanding of the best way to 
perform a high-order refinement of H parameters. 

Theory 

In simple MO theory, a covalent X--H bond may be 
described in terms of a localized doubly occupied 
molecular orbital; 

~o = c n Xn + ex Xx. (1) 

Xx and Zn are basis functions (atomic orbitals) centred 
on atoms X and H respectively. Without loss of 
generality one may assume the atom H to be located at 
the origin. The electron density associated with that 
MO is then 

02 = 2(cZn Z 2 + 2on Cx Xn Zx + CZx Z~). (2) 

The corresponding contribution to the X-ray scattering 
is obtained as 

(270-3/2 f (02 exp (ik. r) dr = 2c~ IHn + 4C H Cx lxH 

+ 2cZxlxx. 
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In conventional X-ray structure analysis the entire 
molecular electron density is described in terms of 
spherical atomic-charge distributions. In the present 
case it would seem reasonable to assume that a least- 
squares refinement includes the term C2Ixx in the 
description of the density at atom X. The least-squares 
procedure thus fits a model scattering factor for H, 

Fmo d = exp (ik. D) fn(k) ,  (4) 

to the remaining two terms of the transformed orbital 
density in (3). The quantity D is the vector displace- 
ment of the refined H atom position from the true one, 
at our disposal in the refinement procedure. 

For the purpose of this work, it seems justified to 
simulate the refinement on a discrete set of F k values by 
the minimization of a somewhat generalized R factor: 

R = f '  I AFI 2 dk; (5) 

in which 

AF = 4c n c x Ixn + 2c2n Inn -- q f  mo a. (6) 

The primed integral sign in (5) is used to indicate that 
the refinement may involve only a limited part of k 
space. The factor q multiplying Fmo a accounts for the 
possibility of a scale-factor refinement. Minimizing R 
with respect to the displacement D yields 

dR _ 2 f ' AF dAF* 
dD ~ d k = 0 .  (7) 

Introducing polar coordinates for the integration in k 
space, one obtains (taking O-- 0 for the bond direction) 

j" AFcos OF*od k 3 sin OdkdOd~o = 0. (8) 

The limitations on the integration range are taken to be 

a _<lkl _ b .  (9) 

Assuming the bond density to be cylindrically sym- 
metric around the bond the (p integration may now be 
performed: 

f ' AF(k,O) fn (k )  exp(--ikD cos O) 

x k  3 s i n O c o s O d k d O = O  (10) 

b i t  

/ f [(4cn ex Ixn + 2cZ/an) exp (--ikD cos 0) 
a 0  

X f n ( k )  k 3 sin Ocos O] dOdk 

b It  

-- q f f2(k)  k 3 f sin 0 cos 0 dO dk = O. 
a 0 

(11) 

The second integral in (11) is zero, and the explicit q 
dependence is thus eliminated from the equations. 

By equation (11), D is defined as a function of the 
integration limits (a,b). With a reasonable choice of 

Ixn, Inn and fn ,  one may solve this equation for 
various values of a and b. The experimental findings for 
Rxn as a function of a can thus be compared with 
theoretical results. 

Results and discussion 

Apparent X--H distances as functions of the lower 
sin 0/2 cut-off angle [a in equation (11)] are shown in 
Fig. 1. For C and N, the experimental results obtained 
by Hope & Ottersen are shown for comparison. 

When selecting the basis set in equation (1), Zn has 
been chosen as a (scaled) H l s  orbital: 

)On = - -  e x p ( - Z r ) .  (12) 

This yields 

Imx = (2z0-3/2[1 + (k/2Z)2] -2. (13) 
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Fig. 1. Theoretical estimates of refined X-H distances as functions 
of the lower sin 0/2 cut-off for X = C, N and O. The dashed 
curves show average values from experimental work, with 
e.s.d.'s. 
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For Xx an sp 3 hybrid of exponential 2s and 2p type 
basis functions was used, with orbital exponents chosen 
in accordance with Slater's (1930) rules. 

It seemed realistic to set the scattering factor for H 
equal to the 'observed' one, i.e. 

fH(k)=IHH(k).  (14) 

For the bond overlap density 4CHCxXHXX, the use of 
exponential basis functions leads to some numerical 
complications, as the Fourier transform of such a 
charge distribution cannot be expressed analytically. 
Therefore, it was decided to replace the overlap 
density by a simpler function. Previous experience, both 
theoretical and experimental, indicates that such bond 
densities have approximately spherical symmetry. In 
this work, a single Gaussian function has been used to 
describe the overlap charge distribution: 

[a\3/2 

Here, Sxn is the overlap between Zx and ZH, 

SxH = f Zx Zn dr (16) 

and R~ represents the location of the centre of this 
charge density. The scattering from such a charge 
distribution is known to be 

I x n  = SxH(270 -3/2 exp (ik. R 1 -- 0.25k2/a). (17) 

Inserting (14) and (17) in (11) and performing the 
angular integration leads to 

{ 4c x exp ( -0 .25  k2/a) g[ k(D -- R 1)] 

+ 2 c a f n ( k ) g ( k D ) }  f H ( k ) k 3 d k = O  (18) 

in which 

; ' t  

g(x)  = f exp (ix cos O)sin Ocos dO 
0 

= 2i[sin (x) - x c o s  (x)]/x 2. (19) 

It must be kept in mind that the computational strategy 
outlined here involves a number of adjustable 
parameters. Some effort has been devoted, therefore, to 
an investigation of the influence of those parameters on 
the final results and conclusions. 

In equation (1), the ratio between the MO 
coefficients cH/c x is an ambiguous parameter that must 
be selected. The curves shown in Fig. 1 were obtained 
with c x = CH, i.e. assuming a non-polar X--H bond. In 
order to check whether this assumption was crucial, the 
coefficients were changed to give a gross charge on H 
of +0.3 e. The largest effect of this modification was to 
shorten Rxn by 0 .01-0.02 A for low cut-off values, 
whereas the curves for a > 0.4 A -I were practically 
identical. 

The upper integration limit [b in equation (11)] was 
also varied in the calculations. For b > 1.1-1.2/~-1,  no 
dependence of RxH(a) upon b could be observed. 
Series-termination effects may thus be assumed to 
constitute a minor problem in experimental investiga- 
tions on this subject. Similarly, the orbital exponent for 
H [Z in equation (12)] was varied within reasonable 
limits (1.0-1.5) without significant effect on the 
calculated curves. 

A minimal basis set has been used to expand the 
localized bond orbital in equation (1). It is known that 
an MO calculation using such a basis sometimes gives 
quite strange orbitals and, accordingly, a poor 
representation of the density in the molecule. However, 
in the present case the coefficients c x and c a in equation 
(1) are not variationally determined, but are assumed 
optimal for the expansion of the localized MO, and thus 
for the density. Accordingly, many defects encountered 
when a minimal basis is used in an MO calculation are 
not to be expected with the present model. Neverthe- 
less, the approximate nature of the present model must 
always be kept in mind. 

It is tempting to believe that the shift of H atoms 
from their true positions in usual X-ray work is due to 
the expansion of the density in one-centre terms. There- 
fore, the modification of the model by a two-centre term 
[albeit approximated, cf. equation (15)] is likely to 
improve the results qualitatively. For more quantita- 
tive agreement with experiment a much more refined 
model must be used, but this is not within the scope of 
the present work. 

Conclusions 

Recent experimental work indicates a spectacular effect 
on refined X - H  distances by excluding low-angle data 
from the least-squares refinement. The distances remain 
in error by 0 .1-0 .2  /k when the lower cut-off limit is 
raised from zero to about 0.5 / t  -1, and then suddenly 
shift to apparently correct values within a quite narrow 
interval. This behaviour is confirmed by the present 
theoretical investigations. The calculations also indicate 
a higher cut-off limit for this shift with heavier atoms, 
consistent with the experimental findings. The slight 
minima in the experimental curves for a ~ 0.5 A -1 are 
not reproduced by the calculations, however. 
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